Experimento com vácuo quântico pára o tempo e muda definição da luz

Alterar o vácuo

Imagem relacionadaFísicos alemães deram mais um passo rumo à compreensão e, mais importante, ao domínio do enigmático vácuo quântico, que tem-se mostrado muito diferente da noção de vácuo tradicional.

No vácuo quântico, em vez de um “nada”, há partículas emergindo para a existência e rapidamente desaparecendo o tempo todo – essas partículas fugazes podem ser usadas para criar qubits para computadores quânticos.

A equipe do professor Alfred Leitenstorfer, um especialista em fenômenos ultrarrápidos, já havia descoberto como detectar sinais desse “nada quântico”.

Agora, eles descobriram como manipular o estado elétrico do vácuo quântico, de forma a alterar o estado fundamental do espaço vazio – algo que só pode ser entendido com um bocado de teoria quântica da luz, já que a coisa é algo como “esvaziar o vazio”.

Parando o tempo

Resultado de imagem para parando o tempoO experimento começa com um laser especial, que gera pulsos ultracurtos de luz, que duram apenas alguns femtossegundos, o que significa que seu comprimento de onda é mais curto do que a metade do ciclo de luz que a equipe está estudando – a frequência utilizada fica na faixa do infravermelho médio.

Isso gera uma sensitividade extrema, permitindo a detecção de flutuações eletromagnéticas mesmo na ausência de intensidade da luz, ou seja, na completa escuridão.

Para isso, em vez de operarem no domínio das frequências das ondas de luz, a equipe trabalha no domínio do tempo. Em um determinado ponto no tempo, as amplitudes do campo elétrico são medidas diretamente, em vez de analisar a luz em uma faixa de frequência, como normalmente se faz. Estudando diferentes pontos no tempo produz-se um mapa característico dos padrões do “ruído de fundo” mais fundamental, permitindo tirar conclusões detalhadas sobre o estado quântico temporal dos fótons.

Isto significa que, no momento em que o pulso de laser se propaga junto com o campo quântico que está sendo estudado, o experimento de certa forma pára o tempo. Em última instância, tempo e espaço – ou espaço-tempo, se você preferir – se comportam de forma absolutamente equivalente durante um experimento, o que é uma indicação da natureza inerentemente relativística da luz.

Fonte: Inovação Tecnológica. Para ler o artigo completo, clique aqui

Anúncios

Noooooossa…

P176-600x758.png

Viagem no Tempo – Nerdologia

Como se formam os raios?

Para que surjam raios, é necessário que, além das gotas de chuva, as nuvens de tempestade tenham em seu interior três ingredientes: cristais de gelo, água quase congelada e granizo. Tais elementos se formam na faixa entre 2 e 10 quilômetros de altitude, onde a temperatura fica entre 0 ºC e -50 ºC. Com o ar revolto no interior da nuvem, esses elementos são lançados pra lá e pra cá, chocando-se uns contra os outros. Com isso, acabam trocando de carga entre si: alguns vão ficando cada vez mais positivos, e outros, mais negativos. Os mais pesados, como o granizo e as gotas de chuva, tendem a ficar negativos.

original-4

Por causa da gravidade, o granizo e as gotas de chuva se acumulam na parte de baixo, que vai concentrando carga negativa. Mais leves, os cristais de gelo e a água quase congelada são levados por correntes de ar para cima, deixando o topo mais positivo. Começa a se formar um campo elétrico, como se a nuvem fosse uma grande pilha. Essa dupla polaridade da nuvem é reforçada ainda por dois fenômenos físicos externos a ela. Acima, na região da ionosfera, os raios solares interagem com moléculas de ar, formando mais íons negativos. No solo, por outro lado, diversos fatores contribuem para que a superfície fique eletricamente positiva. Essa polarização da nuvem cria um campo elétrico descomunal: se as redes de alta tensão têm cerca de 10 mil W (watts) de potência, no céu nublado a coisa chega a 1 000 GW (gigawatts)! Tamanha tensão começa a ionizar o ar em volta da nuvem – ou seja, ele passa de gás para plasma, o chamado quarto estado da matéria.

Começa então a se formar um caminho de plasma em direção ao solo. Por ter elétrons livres, o plasma é um bom condutor de eletricidade. Com isso, acaba fazendo a ponte até a superfície para que a tensão da nuvem possa ser descarregada. Enquanto o tronco principal Imagem relacionadadesce rumo ao solo, surgem novos ramos tentando abrir passagem. Quando um tronco principal está próximo do solo, começa a surgir uma massa de plasma na superfície. Essa massa vai subir até se conectar com o veio que desce e, então, fechar o circuito. É por isso que, se alguém estiver perto de onde o fenômeno está rolando, vai perceber os pelos do corpo se eriçando. Quando o caminho se fecha, rola uma troca de cargas entre a superfície e a nuvem e – zap! – temos o relâmpago! A espetacular faísca é fruto do aquecimento do ar, enquanto o ribombar do trovão vem da rápida expansão da camada de ar. Desde o surgimento do tronco de plasma até rolar o corisco, se passa apenas cerca de 0,1 segundo.

Dá-lhe Batman

p016

%d bloggers like this: